Inhoud
Het normale cijfersysteem voor de verdeling is ontwikkeld om cijfers onder studenten te verdelen om een gewenst patroon te volgen. Het wordt meestal toegepast wanneer de testresultaten drastisch lager zijn dan het gemiddelde voor de meeste studenten. Geef het cijfer op basis van statistische verdeling om de kans op de verdelingsdichtheid van het gemiddelde cijfer te bepalen. Het probeert bijvoorbeeld 15% van de studenten rond de 8,9 en 10 te houden, 70% van 5 naar 7 en de andere 15% onder de 5.
Horizontale curve-methode
Stap 1
Tel alle testresultaten bij elkaar op, de cijfers die de studenten daadwerkelijk hebben gehaald en deel ze door het aantal studenten dat de test heeft gemaakt om het gemiddelde te vinden.
Stap 2
Voeg een punt toe aan het gemiddelde om het voor de klas zoveel te verhogen als u wilt. Als het testgemiddelde bijvoorbeeld 66% was en uw klas normaal 70%, voeg dan 4% toe.
Stap 3
Tel hetzelfde aantal punten op bij het gemiddelde van alle cijfers van studenten om de gewenste cijfercurve te bereiken.
Stap 4
U kunt ook de hoogste score in de kamer bekijken en een punt toevoegen om op te tellen tot 100%. Voeg bijvoorbeeld 5% toe als de hoogste score 95% was. Tel voor alle leerlingen hetzelfde aantal punten op.
Herschrijf en herschrijf
Stap 1
Geef de examens terug aan uw studenten en laat ze de vragen die ze hebben gemist volledig herschrijven.
Stap 2
Laat ze zowel het origineel als het herschreven bewijs terugsturen. Corrigeer en beoordeel de nieuwe toets.
Stap 3
Tel de twee resultaten bij elkaar op en deel door 2 om een gemiddelde van de twee tests te krijgen. Laat alle studenten achter met de gemiddelde score van de combinatietoetsen.
Stap 4
Of geef studenten slechts een percentage van hun nieuwe cijfer om uit te kiezen. Als de student bijvoorbeeld 72% scoort op de originele toets en 95% op het herschrijven, geef dan slechts 30% van het nieuwe cijfer met behulp van deze berekening: origineel cijfer + (nieuw cijfer - origineel cijfer) x gekozen percentage. Met behulp van de bovenstaande gegevens resulteert deze formule in 72 + (95 - 72) x 0,3 = 78,9.